
An Integrated System for Multi-Rov r Scientific Exploration 
Tara Estlin, Tobias Mann, Alexander Gray, G egg Rabideau, Rebecca Castaiio, 

Steve Chien and Eric jolsness 
Jet Propulsion Labora ory 

California Institute of  Tec nology 
4800 Oak Grove Dri e 

Pasadena, CA 91109- 099 
{firstname.lastname}@jpl. f asa.gov 

Abstract 

This  paper  describes  an  integrated  system for  coordi- 
nating  multiple  rover  behavior  with the overall  goal 
of collecting  planetary  surface data. The Multi-Rover 
Science  Exploration  system  integrates  concepts from 
machine learning with  planning  and  scheduling  to  per- 
form autonomous  scientific  exploration by cooperating 
rovers. The integrated  system  utilizes a novel  ma- 
chine  learning  clustering  component to analyze  science 
data and direct new science activities. A planning  and 
scheduling  system is employed to generate rover  plans 
for achieving  science  goals  and to coordinate  activities 
among  rovers. We describe each of these  components 
and  discuss  some of the key integration  issues that 
arose  during  development  and  influenced  both  system 
design  and  performance. 

Introduction 
Landmark  events have recently taken place  in the  ar- 
eas of space  exploration  and  planetary rovers. The 
Mars Pathfinder mission was a major success, not only 
demonstrating the feasibility of sending rovers to  other 
planets,  but displaying the significance of such missions 
to  the scientific community. Future missions are be- 
ing planned to send additional robotic vehicles to Mars 
as well as to  the outer  planets  and an asteroid (jpl 
1999). In  order to increase science return  and enable 
certain  types of science activities,  future missions  will 
require larger sets of rovers to gather the desired data. 
These rovers will need to behave in a coordinated fash- 
ion where each rover accomplishes a subset of the over- 
all  mission goals and shares any acquired information. 
In  addition, it is desirable to have highly autonomous 
rovers that require little communication with scientists 
and engineers on  Earth  to perform their tasks. An au- 
tonomous rover  will be able to make decisions  on its 
own as to what  exact science data should be returned 
and how to go about  the  data gathering process. 

This  paper presents the Multi-Rover Science Explo- 
ration System (MRSES) which provides a framework 
for autonomously achieving planetary science goals. 
This  system  integrates techniques from  machine learn- 
ing with planning and scheduling to enable autonomous 
multi-rover behavior for analyzing science data, evalu- 
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k1arti;m rockscapes are created for use in the simulator 
by using distributions over rock types, sizes and loca- 
tions. When science mcasurements are requested from 
a terrain during execution, rock and mineral spectral 
models are used to generate sample spectra based on 
the type of rock being observed. 

The remainder of this paper is organized in the fol- 
lowing manner. We begin by characterizing the cooper- 
ating rovers application domain and describing our sci- 
ence scenario. Next, we present the MRSES integrated 
system framework and describe each of its components. 
We then discuss design decisions and system require- 
ments that arose during integration and any general 
lessons learned. In the final sections, we discuss related 
work, planned future work, and present our conclusions. 

Cooperating Rovers  for  Science 
Utilizing multiple rovers on planetary science missions 
has many advantages. First, multiple rovers‘can col- 
lect more data than a single rover. A team of rovers 
can cover a larger area in a shorter time where sci- 
ence gathering tasks are allocated over the team. Sec- 
ond, multiple rovers can perform tasks that otherwise 
would not be possible using a single rover. For in- 
stance, rovers landed at different locations can cover 
areas with impassable boundaries. Also, with several 
rovers, one rover can afford to take more risk and 
thus attempt tasks that usually might be be avoided. 
Third, more complicated cooperative tasks can be ac- 
complished, such as taking a wide baseline stereo image 
(which requires two cameras separated by a certain dis- 
tance). Finally, multiple rovers can enhance mission 
success through increased system redundancy. If one 
rover fails, then its tasks could be quickly taken over 
by another rover. In all cases, the rovers should behave 
in a coordinated fashion, dividing goals appropriately 
among the team and sharing acquired information. 

Coordinating multiple distributed agents for a mis- 
sion to Mars or other planet introduces some interest- 
ing new challenges for the supporting technology. Issues 
arise concerning communication, control and individual 
on-board capabilities. Many of these design decisions 
are related, and all of them have an impact on any on- 
board technologies used for the mission. For example, 
for an on-board science analysis system, the amount 
of communication available will determine how much 
science data can be easily shared. This factor will also 
affect a planning system by determining how much each 
rover can coordinate with other rovers to perform tasks. 
The control scheme will determine which rovers execute 
what science gathering tasks which affects the on-board 
components. For instance, some rovers may be utilized 
only for science data gathering, while other may be used 
for planning and/or science analysis. Decisions on the 
on-board capabilities of each rover can also determine 
the independence of a rover. 

For the framework presented in this paper, we have 
initially chosen the configuration of a team of three 
rovers where each rover has a planning and learning 
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Figure 1: MRSES Architecture Diagram 

tool on-board. Each rover can thus plan for its assigned 
goals, collect the required data, and perform science 
analysis on-board which will direct its future goals. In 
addition, a central planner and learner are assumed to 
be located on either a lander or one of the rovers, which 
are used to coordinate science data and goals. 

We evaluate  our framework by testing its ability to 
build a model of the distribution of terrain rocks, clas- 
sified according to composition as measured by a bore- 
sighted spectrometer. To perform testing for differ- 
ent planetary terrain models, different rock fields are 
generated by using distributions over rock types, sizes, 
and locations. Science goals consist of requests to take 
spectral measurements at certain locations or regions. 
These goals can be prioritized so that if necessary low 
priority goals can be preempted (e.g. due to resource 
constraints such as low battery power). 

Science goals are divided among the three rovers. 
Each rover is identical and is assumed to have a spec- 
trometer on-board as well as other resources including a 
drive motor, a solar panel that provides power for rover 
activities, and a battery that provides backup power 
when solar power is not available. The battery can also 
be recharged using the solar panel when possible. Col- 
lected science data is immediately transmitted to the 
lander where it is stored in memory. The lander can 
only receive transmissions from one rover at a time. 

Multi-Rover Science Architecture 
The overall MRSES architecture is shown in Figure 1. 
The system is comprised of three major components: 
e Data Analysis: A distributed machine-learning sys- 

tem which performs unsupervised clustering to model 
the distribution of rock types observed by the rovers. 
This system is designed to direct rover sensing to con- 
tinually improve this model of the scientific content 
of the planetary scene. 



Planning: A distributed-planning system that pro- 
duces rover-operation plans to achieve input science 
goals. Planning is divided between a central plan- 
ner, which  efficiently divides up science  goals  between 
rovers, and a distributed  set of planners which each 
plan for operations  upon an individual rover. 
Environment  simulator: A multiple rover simula- 
tor  that models different geological environments and 
rover-science operations within them.  The simulator 
manages science data for each environment, tracks 
rover operations within the  terrain,  and reflects read- 
ings by  rover science instruments. 

MRSES operates in a closed-loop  fashion  where the 
data analysis system can be seen to take the role of 
the scientist driving the exploration process. Spectra 
data are received  by individual rover clustering algo- 
rithms, which attempt  to locally model the  distribution 
of rocks according to broad classifications of  r.ock com- 
positions. This information is then sent to a central 
clusterer which integrates  all  gathered data into  an up- 
dated global model and broadcasts the new model  back 
to  the  distributed clusterers. A prioritization algorithm 
uses the clustering output  to generate a new set of ob- 
servation goals that will further improve the accuracy 
of the model. These goals are passed to a central plan- 
ner which assigns individual rovers to goals  in a fashion 
that will  most  efficiently serve the requests. Then each 
rover planner produces a set of actions for that rover 
which  will achieve as many of its assigned goals as pos- 
sible. These  action sequences are sent to  the simulator 
where they are executed and any  gathered data is sent 
back to  the rover clusterers.  This cycle continues until 
enough data is gathered to produce distinct clusters for 
any observed rock types. 

In the next few sections, we discuss each of the 
MRSES system components in more detail. 

Data Analysis System 
To perform science analysis, we use a machine-learning 
system which performs unsupervised clustering to 
model the distribution of rock types in the observed 
terrain. A primary  feature of MRSES  is that  separate 
rovers cooperate to form a joint consensus for the ob- 
served distribution of rock types. Through the learning 
process, the global distribution model  keeps improv- 
ing as more data is observed over time. Currently, the 
model used for this  distribution is a simple K-means- 
like unsupervised clustering model, where  each cluster 
represents a different rock type in the sensor space. 
Each sensor reading is a spectral measurement return- 
ing values at 14 wavelengths. Learning takes place in 
the full 14-dimensional continuous space. 

Distributed  Clustering At any given time, each 
rover has a different location on the planetary surface 
and is sensing different targets. So each  rover has its 
own distinct segment of the overall dataset, stored lo- 
cally in its data buffer. Over time, each  rover collects 
a new set of data points, or 14-dimensional spectrum 
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Figure 3: Clustering objective function 

tween probabilistic and  statistical mechanics-style  ob- 
jective functions for mixture  distributions.  This  trans- 
formation allows us to generalize the probabilistic ob- 
jective function to include a temperature variable, al- 
lowing  us to use deterministic annealing to perform 
global optimization of the model parameters. 

The  distributed version of the clustering model  fol- 
lows a development similar to  that in (Tsioutsias & 
Mjolsness 1994) for partitioned neural networks. The 
entire  dataset (across all rovers) X contains N vectors 
- z = ( 2 1 , .  . . , Z D )  indexed by n. Denoting each of the R 
rovers with an index T ,  each rover has a subset X ,  of the 
data, containing NT sensor readings. The global, shared 
clustering model consists of K centroids, p k .  Each rover 
stores  its own local estimates of the centroids, PI, based 
on its  subset of the  data. M,,k denotes the membership 
of datum E, in cluster k ,  where zkzl Mnk = 1. Cluster 
membership is determined by a softmax over the dis- 
tance of a datum  to each cluster mean. We  will write 
Mck since memberships are only computed and  stored 
locally on each rover. 

The clustering algorithm  adjusts the values of the 
centroids in order to minimize the objective function 
shown in Figure 3, by alternating between a centroid re- 
laxation  step, where the cluster means are re-estimated 
based on the current membership weights, and a mem- 
bership relaxation  step, where the memberships are re- 
estimated based on the means. a is the reward for 
committing to cluster k and each X ,  corresponds to a 
Lagrange multiplier enforcing non-negativity of mem- 
berships. T is the  temperature parameter. 

The first term in this objective function can be identi- 
fied with minimizing the distance between centroids and 
the  data associated with them  and keeping the R esti- 
mates of the centroids close to each other.  The second 
serves to prevent negative memberships. The  third en- 
forces that memberships sum to unity across the classes. 
Goal Selection The clustering model  in this initial 
prototype system may  be  viewed as the scientific end- 
product of the exploration. The overall purpose of 
the system is to increase the accuracy of the cluster- 
ing model by obtaining sensor readings in  regions that 
are likely to improve the model. An update of the clus- 
tering model determines new planetary locations to be 
explored by the rovers. These locations are sent as for- 
mal goals by the learner to  the planner. 

K 

Recall that clusters are defined in a high-dimensional 
spectra space in  which unsupervised learning will iden- 
tify  different  rock types. Every datum also has an asso- 
ciated position in physical space, on the  planetary sur- 
face.  Assuming there is  some (perhaps very noisy) cor- 
respondence between  rock type  and  spatial location, the 
purpose of goal selection is to direct exploration toward 
certain rock types by specifying  new spatial  targets (co- 
ordinates in 3-space at which to  take sensor readings) 
according to  the observed rock type  distribution. 

A very  simple heuristic for goal selection is used in 
the current system. A constant number G of new spa- 
tial  targets will  be specified  for each cluster. For each 
cluster, two of the G spatial  targets  are chosen  by first 
finding the two mutually most distant points (in phys- 
ical space) of that rock type,  then selecting a point in 
space stochastically from within a neighborhood of each 
of those 2 points. These goals are given  high priority. 
The rest of the G targets  are chosen  from neighbor- 
hoods of randomly selected rocks in the cluster,  and 
are given  lower priority. The idea of this heuristic is 
to bias the system toward exploration in extrema1 di- 
rections, as well as to explore the rock distribution in 
a way which balances effort equally between  rock types 
(thus avoiding,  say, spending undue energy on a very 
common  rock type at  the expense of rare rock types). 

Planning System 
To produce individual rover plans, we used a distributed 
version of the ASPEN (Automated Scheduling and 
Planning Environment) system (F’ukanaga et  al. 1997). 
ASPEN  is a configurable, generic planning/scheduling 
application framework that can be tailored to specific 
domains to create conflict-free plans or schedules. Its 
components include: 
0 An expressive modeling language to allow the user to 

naturally define the application domain 
0 A constraint management system for representing 

and maintaining domain operability  and resource 
constraints, as well as activity requirements 
A set of search strategies and repair heuristics 

0 A temporal reasoning system for expressing and 

A graphical interface for visualizing plans/schedules 
ASPEN  employs techniques from planning and 

scheduling to automatically generate the necessary 
rover activity sequence to achieve the input goals. This 
sequence  is produced by utilizing an iterative repair 
algorithm (Zweben et  al. 1994) which  classifies  con- 
flicts and  attacks them each individually. Conflicts  oc- 
cur when a plan constraint  has been violated where 
this constraint could  be temporal or involve a resource, 
state or activity parameter. Conflicts are resolved by 
performing one or more schedule modifications such as 
moving, adding, or deleting activities. 

A rover that is at  the incorrect location for a sched- 
uled  science activity is one type of conflict. Resolv- 
ing this conflict  involves adding a traverse command to 

maintaining temporal constraints 





Figure 5: Multiple rovers in simulated rockscape 

Integration Issues 
The integration of two  AI problem solvers and a sim- 
ulated environment involved a number of decisions. In 
this section, we review  some of the interesting and chal- 
lenging issues that arose in performing this  integration; 
we particularly focus on the areas of system and inter- 
face design and system performance. 

One major  integration issue is interfacing between 
the different components. For instance, the planner 
was required to produce plans in a format compatible 
with the action  representation required by the simula- 
tor. Also, the learner required the ability to ingest any 
science data returned from the simulator. A more com- 
plicated interface arose between the learning and plan- 
ning components. Issues such as shared representation 
of goals and objectives had to be resolved. 

When specifying a new  science goal, the learning 
component usually requested additional measurements 
be taken from a particular rock. However, this gen- 
eral request had to be grounded in the form of terrain 
coordinates in order to represent the goal in the plan- 
ner's modeling language. In  addition,  the planning and 
learning components had to agree on a priority repre- 
sentation that was expressive enough to represent the 
information required by the learner but that could also 
be easily utilized during planning to remove  goals if nec- 
essary due  to resource constraints. Another important 
issue was interfacing between science and engineering 
representations.  Within the planner,  constraints may 
deal with sets of goals, resources and/or  states which 
are primarily scientific, primarily engineering, or which 
form part of the interface between these two  layers. 

A separate design consideration was that  the interac- 
tions between the modules of the integrated system be 
asynchronous. In other words, each module needed to 
signal the next module when appropriate,  rather  than 
designating one process a control process, which  would 
then control the  actions of the  others. For instance, the 
planner would be not begin planning until receiving a 
new set of science requests from the science analysis 
module. To that  end, we designed a synchronization 

architecture that would facilitate interprocess signaling 
and also communication of data. Essentially, each mod- 
ule acted as both a server process and a client process. 
A process would wait  in server mode until the client 
initiated contact, do its processing, and  then  initiate 
contact with the server process of the next system as a 
client. After the process  finished communicating to  the 
next process, it would go back to server mode until  it 
had new data  to process. 

One important decision  is the design of the overall 
planner, execution, and learner feedback. How often 
the system loop  is run is one important issue. Increas- 
ing the frequency of feedback improves the responsive- 
ness of the overall system to changes in the  inputs (e.g. 
changes  in the observed  science data) but increases the 
computation cost of running the constituent algorithms 
(e.g. planner, learner). Additionally, due to  the de- 
sign of individual algorithms, one may know  how  much 
change  in information is  needed to likely change the re- 
sults of the computation (e.g. for the learner how  much 
new data is  likely to change the collection goals, for 
the planner how much of a change in execution state or 
goals  is  likely to require another  plan). While not criti- 
cally sensitive to  the amount of  new data it receives, the 
more  new data obtained by the science analysis mod- 
ule  on a given system cycle, the more its model of the 
rock type distribution will improve, resulting in useful 
new exploration goals. If, say, the learner obtains  little 
new information, the  targets  it decides upon will not 
be  much  more  useful than those it produced on the last 
iteration. 

A second  issue related to system feedback  is the 
length of the horizon (i.e. the allowed plan execution 
time period) that is considered by each cycle. If this 
horizon  is short, it imposes constraints on how long the 
cycle must be run (e.g. if the horizon  is  two hours, the 
cycle must be run at least every two hours) '. If the 
horizon  is  long, the individual modules may take longer 
to run (e.g. a planner takes longer to plan for a longer 
horizon). The number of goals that  are requested per 
iteration also (to some degree) drives the size of the 
planning horizon  since  only a certain number of goals 
can be solved  in any set length of time. 

The frequency and horizon of each cycle  is not con- 
strained by our architecture. However,  for our specific 
scenario, we chose to have the cycle  invoked  once per 
local day and to include a horizon of one day. This 
time scale is reasonable because science activities are 
not possible during the night period (as  the rover  is 
mainly solar powered) but  computation is possible dur- 
ing such periods (using the  battery).  Thus possible ex- 
ecution time is not expended during planning. How- 
ever, other choices  for  cycle frequency and horizon are 
possible, and may make sense for different mission  pa- 
rameters. 

'However,  overlapping planning horizons  may  be  desir- 
able, requiring the cycle to be  run  more  frequently 



Related Work 
The idea of having a scientific  discovery system direct 
future  experiments is present in a number of other sys- 
tems. Work on learning by experimentation, such as 
IDS (Nordhausen & Langley 1993) and  ADEPT  (Raja- 
money 1990), varied certain  quantitative  and  qualita- 
tive values in the domain and  then measured the effects 
of these changes. IDS is similar to MRSES  in that ex- 
periments are motivated towards the discovery of  new 
phenomena, however, ADEPT was directed towards re- 
futing  certain hypotheses. MRSES  differs from all these 
systems in that  it interacts with an environment sim- 
ulator to perform experimentation  and  it is specialized 
to  particular problems and scenarios in planetary sci- 
ence. MRSES is also integrated with a planning system 
which constructs the detailed activity sequence needed 
to perform each experiment based on a domain model. 

Other work has used experimentation to learn from 
the environment but experiments have not been scien- 
tifically driven. EXPO (Gil 1993) integrates planning 
and  learning  methods to acquire new information by  in- 
teracting  with  an  external environment. However,  while 
MRSES learns classification models of new  geological 
features, EXPO, tries to improve its planning-related 
domain knowledge. 

There  has also been a significant amount of  work on 
cooperating  robots. One related system is GRAMMPS 
(Bummit & Stentz 1988), which coordinates multi- 
ple mobile robots visiting locations in cluttered, par- 
tially known environments. GRAMMPS also has a 
low-level planner on each robot  and uses a similar ap- 
proach to distribute  targets (discussed below), however 
GRAMMPS does not use machine learning techniques 
to direct science observations and also, does not look at 
multiple resources or exogenous events. 

Most other  cooperative  robotic systems utilize reac- 
tive planning techniques (Mataric 1995; Parker 1999). 
These  systems focus on behavioral approaches and do 
not explicitly reason about assigning goals and planning 
courses of actions. hrthermore, these systems do not 
utilize a learning component to drive the system goals. 

Future Work 
A number of extensions are planned for each component 
of MRSES. One  major extension already under way is 
to interface with a multiple rover execution architec- 
ture  (Estlin,  Hayati, & et al. 1999) being developed at 
JPL  that includes a number of additional components 
including: a real-time multi-rover hardware simulator 
which models rover kinematics and sensor feedback, 
control software from the NASA JPL Rocky 7 rover, 
and a separate machine learning system for modeling 
resource utilization. MRSES  is intended to provide the 
science layer for this  architecture, which  will  allow  for 
more realistic testing of the MRSES framework. In the 
rest of this section we describe extensions planned for 
each MRSES component. 
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for the  sorts of rocks expected on Mars, or that a tex- 
ture  tiatabuse be compiled. Both avenues are currently 
being considered. 

Although modeling the  distribution of rock  compo- 
sitions is a  task that can  yield  useful information for 
geologists, intelligent rovers should be able to investi- 
gate questions that  are more interesting to geologists. 
For instance,  there are scenarios where an impact exca- 
vates an ancient  hydrothermal  system, in  which there 
was a stable  supply of warm water beneath the surface 
of Mars at some time in the  past. It may be possible 
to deduce the existence of such a system from the de- 
bris scattered on the surface; such a system would  have 
altered the mineral characteristics of the local rocks, 
which the impact would  have strewn  about. The ques- 
tion then becomes:  given a set of rovers, some in loca- 
tions not reachable by other rovers (i.e. in the bottom of 
an impact  crater versus outside the rim of the  crater), 
how  well  would rovers  be able to supply evidence  for 
the existence of such a system? This scenario is  being 
developed in collaboration with planetary geologists at 
JPL  to explore the uses of a multi-rover architecture. 

Conclusions 
This  paper outlines a framework for coordinating mul- 
tiple rover behavior in generating  and achieving geo- 
logical science goals. This  system  integrates techniques 
from machine learning and planning and scheduling to 
autonomously analyze and request new  science data and 
generate the action sequences to retrieve that  data. We 
discuss a number of integration issues including devel- 
oping shared goal and plan representations, coordinat- 
ing systems asynchronously, and adjusting interface pa- 
rameters to best serve the overall system goal. We hope 
the techniques and issues presented in this paper will 
prove  useful to other designers of integrated systems. 
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